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Abstract

We propose the elastic net, a new regression shrinkage and selec-
tion method. Real data and a simulation study show that the elastic
net often outperforms the lasso, while it enjoys a similar sparsity of
representation. In addition, the elastic net encourages a grouping ef-
fect, where strong correlated predictors are kept in the model. The
elastic net is particularly useful in the analysis of microarray data in
which the number of genes (predictors) is much bigger than the num-
ber of samples (observations). We show how the elastic net can be
used to construct a classification rule and do automatic gene selection
at the same time in microarray data, where the lasso is not very satis-
fied. We also propose an efficient algorithm for solving the elastic net
based on the recently invented LARS algorithm.

keywords: Gene selection; Grouping effect; Lasso; LARS algorithm; Mi-
croarray classification.

1 Introduction

We consider the usual linear regression model: given p predictors X1, · · · ,Xp,
we predict the response Y by a linear model

Ŷ = β̂0 + X1β̂1 + · · ·+ Xpβ̂p. (1)

∗Address for correspondence: Trevor Hastie, Department of Statistics, Stanford Uni-
versity, Stanford, CA 94305. E-mail: hastie@stanford.edu.
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Given a data set, a model-fitting procedure gives the vector of coefficients
β̂ = (β̂0, · · · , β̂p). For example, the ordinary least squares (OLS) estimates
are obtained by minimizing the residual sum squares (RSS). Other variants
such as ridge regression and the lasso often improve on OLS. The criteria for
evaluating the quality of a model will differ according to the circumstances.
Typically the following two aspects are important

• Accuracy of prediction on future data: it is hard to defend a model
that predicts poorly.

• Interpretation of the model: scientists prefer a simpler model because it
puts more light on the relations between response and covariates. Par-
simony is especially an important issue when the number of predictors
is large.

It is well known that OLS often does poorly in both prediction and in-
terpretation. Many techniques have been proposed to improve OLS, such as
ridge regression, best subset selection and the lasso. Ridge regression mini-
mizes RSS subject to a bound on the L2 norm of the coefficients. By doing so,
ridge regression shrinks the coefficients continuously toward zero. It achieves
its better prediction performance through a bias-variance trade-off. However,
ridge regression always keeps all the predictors in the model, so it cannot pro-
duce a parsimonious model. Best subset selection minimizes the RSS subject
to the number of non-zero coefficients equals some k, k ≤ p. Obviously best
subset selection produces a sparse model, however it is extremely variable
because of its inherent discreteness.

Tibshirani (1996) proposed a promising method called the lasso. The
lasso minimizes RSS subject to a bound on the L1 norm of the coefficients.
Due to the nature of the L1 penalty, the lasso does both continuous shrink-
age and automatic variable selection at the same time. So the lasso possess
some of the good features of both ridge regression and best subset selec-
tion. Although the lasso has shown success in many situations, it has some
limitations. Consider the following three scenarios:

1. If the number of predictors p is bigger than the number of observations
n, the lasso is not well-defined unless the bound on the L1 norm of the
coefficients is smaller than a certain value. Moreover, it at most selects
n variables because of the nature of the convex optimization problem.
This seems to be a limiting feature for a regularization method.
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2. If there is a group of variables among which the pairwise correlations
are very high, then the lasso tends to select only one variable from the
group and does not care which one is selected.

3. For usual n > p situations, if there exist high correlations among pre-
dictors, the prediction performance of the lasso is dominated by ridge
regression by a good margin.

Scenarios (1) and (2) make the lasso an inappropriate variable selection
method in some situations. We illustrate our points by considering the re-
gression problem in microarray gene expression data. A typical microarray
data set has thousands of predictors (genes) and less than 100 samples. For
those genes sharing the same biological “pathway”, the correlations among
them can be high. We think of those genes as forming a group. The ideal
gene selection method shall be able to do two things: eliminate the trivial
genes, and automatically include whole groups into the model once one gene
amongst them is selected. We call this “grouped selection”. Because we are
dealing with the pÀ n case and grouped variables, the lasso is not the ideal
method. As for prediction performance, scenario (3) is not rare in regression
problems. So there is quite a lot of room for improving the prediction power
of the lasso.

Our goal is to find a model-fitting procedure that works as well as the
lasso whenever the lasso does the best, and can fix the problems highlighted
above, i.e., it should mimic the ideal gene selection method in scenarios
(1) and (2), especially with microarray data, and it should have a better
prediction performance than the lasso in scenario (3).

In this paper we propose a new regression method which we call the elas-
tic net. Similar to the lasso, the elastic net simultaneously does automatic
variable selection and continuous shrinkage. Meanwhile the elastic net has
the “grouped selection” ability. It is like a stretchable fishing net that retains
“all” the large “fish”. Simulation studies and real data examples show that
the elastic net significantly improves on the lasso in terms of prediction accu-
racy. The elastic net is particularly useful for microarray data analysis, where
the lasso is not very satisfactory. We use the elastic net to do microarray
classification and automatic gene selection, and obtain good results.

The paper is organized as the follows. Section 2 introduces the elastic net
penalty and the naive elastic net which is a penalized least squares method
using the elastic net penalty. We give some results on the grouping effect
of the naive elastic net, and show it is equivalent to a lasso type problem.
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In Section 3, we discuss the strength and drawbacks of the naive elastic net,
which leads us to the elastic net. We argue that the elastic net keeps the
strength of the naive elastic and eliminates its deficiency, hence the elastic net
is the desired method to achieve our goal. We also address the computation
issues and show how to select the tuning parameters of the elastic net. As
demonstrations, prostate cancer data is used to illustrate our methodology in
Section 4. Simulation results are presented in Section 5. Section 6 shows the
application of the elastic net to classification and gene selection in microarray
gene-expression data. Leukemia data is used as an illustration example.
Proofs of the theorems are given in the appendix.

2 Naive Elastic Net

2.1 Definition

Suppose the data set has n observations with p predictors. Let Y = (y1, . . . , yn)T

be the response and X = [X1| · · · |Xp] be the model matrix, where Xj =
(x1j, . . . , xnj)

T , i = 1, . . . , p are the predictors. After a location and scale
transformation, we can assume the response is centered and the predictors
are standardized,

n∑

i=1

yi = 0,
n∑

i=1

xij = 0, and
n∑

i=1

x2
ij = 1, for j = 1, 2, . . . , p. (2)

For any fixed non-negative λ1 and λ2, we define the naive elastic net
criterion as

L (λ1, λ2, β) = |Y −Xβ|2 + λ2 |β|2 + λ1 |β|1 , (3)

where

|β|2 =
p∑

j=1

β2
j and |β|1 =

p∑

j=1

|βj| .

Then the naive elastic net estimator β̂ is chosen by minimizing the naive
elastic net criterion,

β̂ = arg min
β

L (λ1, λ2,β) . (4)
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Figure 1: The curve around origin is the contour plot of the elastic net penalty
with p = 2, α = 1 and t = 0.5. We see singularities at the vertexes and the
edges are strictly convex. The strength of convexity varies with α. The oval
shape curve shows the contour of L2 loss with β̂ols as its center.

The above procedure can be viewed as a penalized least squares method.
Let α = λ2

λ1+λ2
, then solving β̂ in (3) is equivalent to the optimization prob-

lem:

β̂ = arg min
β
|Y −Xβ|2 , subject to (1− α) |β|1 + α |β|2 ≤ t for some t. (5)

We call the function (1 − α) |β|1 + α |β|2 the elastic net penalty, which is a
convex combination of the lasso and ridge penalty. ∀α ∈ (0, 1), the elastic
net penalty function is singular (without first derivative) at 0 and it is strictly
convex. Figure 1 is an example of the contour plot of the elastic net penalty
in 2-dimensional space.

It is known that for ridge regression, if the predictors are highly corre-
lated then the corresponding coefficients tend to be equal (see Theorem 1 in
Section 2.3). This gives us some flavor of the grouping effect even though
ridge regression does not select variables. The lasso on the other hand can
do variable selection. These characteristics are determined by their penalty
functions. So the intuition behind the naive elastic net is that by mixing the
ridge penalty and the lasso penalty, we hope to combine the strengths of the
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lasso and ridge regression so that the new method can achieve our goals.

2.2 Solutions

Here we present a method to solve the naive elastic net problem. The basic
idea is to reduce the naive elastic net problem to an equivalent lasso problem.

Lemma 1 Given data set (Y,X) and (λ1, λ2), define an artificial data set
(Y ∗,X∗) by

X∗
(n+p)×p = (1 + λ2)−

1
2

(
X√
λ2I

)
, Y ∗(n+p) =

(
Y

0

)
.

Let γ = λ1√
1+λ2

and β∗ =
√

1 + λ2β. Then the naive elastic net criterion can
be written as

L (γ,β) = L (γ,β∗) = |Y ∗ −X∗β∗|2 + γ |β∗|1 .

Let
β̂
∗

= arg min
β∗

L (γ,β∗) ,

then

β̂ =
1√

1 + λ2

β̂
∗
.

The proof is just simple algebra, which we omit. Lemma 1 says that we can
transform the naive elastic net problem to an equivalent lasso problem on
an artificial data sets. Note that in the equivalent artificial data sets, the
sample size is n+p and X∗ has rank p, which means the naive elastic net can
potentially select all p predictors in all situations. This important property
overcomes the limitation of the lasso described in scenario (1).

In the case of an orthogonal design, the exact solution of ridge regression

with parameter λ2 is given by β̂(ridge) =
ˆβ
ols

1+λ2
, where β̂

ols
= XTY , while

the lasso solution is given by the soft-thresholding (Donoho et al. 1995),

β̂i(lasso) =
(∣∣∣β̂olsi

∣∣∣− λ1

2

)
+

sgn
(
β̂olsi

)
, where “+” denotes the positive part.

It is straightforward to show that with parameters (λ1, λ2), the naive elastic
net solution is

β̂i(naive elastic net) =

(∣∣∣β̂olsi
∣∣∣− λ1

2

)
+

1 + λ2

sgn
(
β̂olsi

)
. (6)
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lasso

ridge

naive elastic net
net

ols

(0,0)

Figure 2: λ1 = 2, λ2 = 1. Exact solutions for the lasso, ridge and the naive
elastic net in an orthogonal design.

(6) explains clearly how the naive elastic net works in the orthogonal design
case: it first apples soft-thresholding on the OLS coefficients, then directly
shrinks them by factor 1 + λ2 (see Figure 2).

2.3 Results on the grouping effect

In Section 2.1 we argued heuristically that the naive elastic net would tend
to select variables in groups. Now we try to give some mathematical support
to our argument.

Theorem 1 Given data (Y,X) and parameters (λ1, λ2), the response Y is
centered and the predictors X are standardized. Let β̂ (λ1, λ2) be the naive

elastic net estimates. Define Dλ1,λ2(i, j) = 1
|Y |

∣∣∣
∣∣∣β̂i (λ1, λ2)

∣∣∣−
∣∣∣β̂j (λ1, λ2)

∣∣∣
∣∣∣ .

1. If Xi = Xj, then given any fixed λ2 > 0, β̂i (λ1, λ2) = β̂j (λ1, λ2) for all

λ1 ≥ 0, i.e., the whole solution paths of β̂i and β̂j are the same.

2. ∀λ2 > 0, suppose β̂i (λ1, λ2) β̂j (λ1, λ2) > 0, then Dλ1,λ2(i, j) ≤ 1
λ2

√
2 (1− ρ),

where ρ = cor(Xi,Xj).
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Remark 1: Conclusion (1) is a well-known result in ridge regression. From
the proof (given in Appendix) we can see that this conclusion is always
true for any loss function as long as the penalty function is strict convex.

Remark 2: The unit-less quantity Dλ1,λ2(i, j) describes the difference be-
tween the coefficient paths of predictors i and j. If Xi and Xj are
highly correlated, i.e., ρ

.
= 1 (if ρ

.
= −1 then consider −Xj instead),

conclusion (2) says the difference between the coefficient paths of pre-
dictor i and predictor j is almost 0, which in certain aspects quantifies
the grouping effect of the naive elastic net.

3 Elastic Net

3.1 Deficiency of the naive elastic net

The naive elastic net looks very promising so far. Due to the nature of
the elastic net penalty, it seems to posses the good properties of both ridge
regression and the lasso. However, real data examples and simulations (the
results are given in Section 4 and Section 5) show that the naive elastic
net does not perform satisfactorily when compared to ridge regression and
the lasso. It behaves either like ridge regression, keeping all the variables
in the model or very similar to the lasso, thus it fails to truly combine the
good properties of ridge and the lasso. The naive elastic net estimator is
a two-stage procedure: for each fixed λ2 we first find the ridge regression
coefficients, and then we do the lasso type shrinkage along the lasso coefficient
solution paths (which also depend on λ2). The naive elastic net inherits the
grouping effect from ridge, and we hope that it also enjoys the sparsity of
lasso. But it incurs a double amount of shrinkage, since ridge regression also
shrinks the coefficients at the beginning. Double shrinkage does not help to
reduce the variances much and introduces unnecessary extra bias. When we
select the tuning parameters according to MSE by some external methods
such as cross-validation, we tend to end up with a result either close to ridge
or close to the lasso. Therefore the double shrinkage is really where the
problem lies.
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3.2 The elastic net estimates

We outline a remedy for the poor performance of the naive elastic net. Let us
follow the notation of Section 2.2. Given data (Y,X) and penalty parameter
(λ1, λ2), after introducing the equivalent artificial data set (Y ∗,X∗), we solve
a lasso type problem

β̂
∗

= arg min
β∗
|Y ∗ −X∗β∗|2 +

λ1√
1 + λ2

|β∗|1 . (7)

The elastic net estimates β̂ are defined as

β̂ (elastic net) =
√

1 + λ2β̂
∗
. (8)

Recall that β̂(naive elastic net) = 1√
1+λ2

β̂
∗
, thus

β̂(elastic net) = (1 + λ2)β̂(naive elastic net). (9)

Hence the elastic net estimate is nothing but a rescaled naive elastic net
estimate.

Why choose 1 + λ2 as the scaling factor? One obvious motivation is
from the exact solution of the naive elastic net with an orthogonal design.
After scaling correction by 1 + λ2 the elastic net estimate is identical to the
lasso estimate, which is known to be minimax optimal (Donoho et al. 1995).
Another motivation for the scaling correction comes from a decomposition
of the ridge operator. Since X are standardized beforehand, we have

XTX =




1 ρ12 · ρ1p

1 · ·
1 ρp−1,p

1




p×p

.

Then for ridge regression with parameter λ2,

β̂(ridge) = RY,

where R is the ridge operator

R = (XTX + λ2I)−1XT .
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We can rewrite R as

R = 1
1+λ2

R∗ = 1
1+λ2




1 ρ12

(1+λ2)
· ρ1p

(1+λ2)

1 · ·
1 ρp−1,p

(1+λ2)

1




−1

XT . (10)

R∗ is like the usual OLS operator except the correlations are shrunk by factor
1

1+λ2
, which we call de-correlation. (10) is regarded as the decomposition of

ridge operator: ridge regression is equivalent to de-correlation followed by
direct scaling shrinkage. So the intuition of the scaling correction is that if
we re-scale the naive elastic net estimator by factor 1 +λ2, we may eliminate
the ridge shrinkage effect while still keep the de-correlation part of ridge
regression, which is responsible for the grouping effect, then we can rely on
the lasso shrinkage to achieve good prediction performance and sparsity. In
the later sections, real data and simulations confirm these arguments. Hence
the elastic net is the desired method to achieve our goals.

3.3 Connection with univariate soft-thresholding

Let β̂ stand for β̂ (elastic net). The next theorem gives another presentation
of the elastic net, in which the de-correlation argument is more explicit.

Theorem 2 Given data set (Y,X) and (λ1, λ2), then the elastic net esti-
mates β̂ are given by

β̂ = arg min
β

βT
(

XTX + λ2I

1 + λ2

)
β − 2Y TXβ + λ1 |β|1 . (11)

It is easy to see that

β̂(lasso) = arg min
β

βT
(
XTX

)
β − 2Y TXβ + λ1 |β|1 .

So the de-correlation distinguishes the elastic net from the lasso.
The lasso is a special case of the elastic net with λ2 = 0. The other

interesting special case of the elastic net happens when λ2 →∞. By theorem
2, when λ2 →∞, β̂ → β̂(∞), where

β̂(∞) = arg min
β
βTβ − 2Y TXβ + λ1 |β|1 .
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β̂(∞) has a simple close form

β̂(∞)i =

(∣∣∣Y TXi

∣∣∣− λ1

2

)

+

sgn
(
Y TXi

)
, i = 1, 2, . . . , p. (12)

Observe that Y TXi is the univariate regression coefficient of the i-th predic-
tor, hence β̂(∞) is the estimator by applying soft-thresholding on univariate
regression coefficients. We call β̂(∞) the univariate soft-thresholding (UST)
estimates.

UST totally ignores the dependence among predictors, and treats them
as independent variables. Although this may be considered illegitimate, UST
and its variants are used in other methods such as SAM (Tusher et al. 2001)
and nearest shrunken centroids (NSC) classifier (Tibshirani et al. 2002) and
have successful empirical performances. The elastic net naturally bridges the
lasso and UST, which may help to shed some light on UST and its variants.

3.4 Computations: the LARS-EN algorithm

We propose an efficient algorithm to efficiently solve the entire elastic net
solution paths for any fixed λ2. Our algorithm is based on the recently pro-
posed LARS algorithm of Efron et al. (2004) (referred to as the LARS paper
hereafter), thus we call it LARS-EN algorithm. In the LARS paper, the
authors proved that starting from 0, the lasso solution paths grow piecewise
linearly in a predictable way, and based on this they proposed a new algo-
rithm called LARS to efficiently solve the whole lasso solution paths in the
same order of computations as a single OLS fit.

By lemma 1, for each fixed λ2 we transform the elastic net problem to
an equivalent lasso problem on the artificial data set. We also made some
modifications to the original LARS algorithm in order to take advantage of
the sparse structure of X∗, which is crucial in the pÀ n case.

In detail, as outlined in the LARS paper, at the k-th step we need to
invert the matrix GAk = X∗TAkX

∗
Ak

, where Ak is the active variable set. This
is done efficiently by updating or downdating the Cholesky factorization of
GAk−1

found at the previous step. Note that GA = 1
1+λ2

(
XT
AXA + λ2I

)
for

any index set A, so it amounts to updating or downdating the Cholesky
factorization of XT

Ak−1
XAk−1

+ λ2I. It turns out that one can use a simple

formula to update the Cholesky factorization of XT
Ak−1

XAk−1
+ λ2I, which is

very similar to the formula used for updating the Cholesky factorization of

11

XingwXiong


XingwXiong


XingwXiong




XT
Ak−1

XAk−1
(Golub & Van Loan 1983). The exact same downdating function

can be used for downdating the Cholesky factorization of XT
Ak−1

XAk−1
+

λ2I. In addition, when calculating the equiangular vector and the inner
products of the non-active predictors with the current residuals, we can save
computations by the simple fact that X∗j has p − 1 zero elements. In a
word, we do not explicitly use X∗ to compute all the quantities in the LARS
algorithm. It is also economical that we only record the non-zero coefficients
and the active variables set at each LARS-EN step.

The LARS-EN algorithm sequentially updates the elastic net fits step by
step. In the pÀ n case, such as microarray data, it is not necessary to run the
LARS-EN algorithm to the end (early stopping). Real data and simulated
computational experiments show that the optimal results are achieved at an
early stage of the LARS-EN algorithm. If we stop the algorithm after m
steps, then it requires O(m3 + pm2) computations.

3.5 Choice of tuning parameters

Each combination (λ1, λ2) gives a unique elastic net solution, but (λ1, λ2) is
not the only choice for the tuning parameters. In the lasso, the conventional
tuning parameter is the L1 norm of the coefficients (t) or the fraction of the

L1 norm (s). By the proportional relation between β̂ and β̂
∗
, we can also

use (λ2, s) or (λ2, t) to parameterize the elastic net. The advantage of using
(λ2, s) is that s always takes values from 0 to 1. In microarray data situation,
the early stopping strategy is used. For example, if n = 30 and p = 5000, we
may stop the LARS-EN algorithm after 500 steps. The best parameter are
chosen according to the partial solution paths.

How do we pick the optimal parameters? Ideally we would like to choose
the right parameters to minimize the risk on future data, such as population
mean squared error (MSE). In practice people minimize an estimate of the
risk, such as Cp statistic, or cross-validation error. For more details on this
topic, see Chapter 7 of Hastie et al. (2001). In this work, we use 10-fold cross-
validation to estimate the population risk. Note that there are actually two
tuning parameters in the elastic net, so we cross-validate on a 2 dimensional
surface. Typically we first pick a grid of λ2, say (0, 0.01, 0.1, 1, 10, 100) , then
for each λ2 the LARS-EN algorithm produces the entire solution paths of the
elastic net. The other tuning parameter is selected according the entire or
partial (if early stopped) solution paths. If λ1 and λ2 do not appear together,
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we will omit the subscript of λ2.

4 Prostate Cancer Data Example

In this example, the predictors are eight clinical measures: log cancer vol-
ume (lcavol), log prostate weight (lweight), age, log of the amount of benign
prostatic hyperplasia (lbph), seminal vesicle invasion (svi), log capsular pen-
etration (lcp), Gleason score (gleason) and percentage Gleason score 4 or 5
(pgg45). The response is the log of prostate specific antigen (lpsa). The
data came from a study (Stamey et al. 1989). They examined the correla-
tion between the level of prostate specific antigen and those eight clinical
measures.

OLS, ridge regression, the lasso, the naive elastic net and the elastic net
were applied to these data. The prostate cancer data were divided into two
parts: training set with 67 observations, and test set with 30 observations.
Model fitting and tuning parameter selection by 10-fold cross-validation were
done on the training data. We then compared the performance of those
methods by computing their prediction mean squared error on the test data.

Table 1 clearly shows the elastic net is the winner among all competitors
in terms of both prediction accuracy and sparsity. OLS is the worst method.
The naive elastic net is identical to ridge regression in this example. It fails
to do variable selection. The lasso includes lcavol, lweight lbph, svi, and
pgg45 in the final model, while the elastic net selects lcavol, lweight, svi, lcp,
and pgg45. The prediction error of the elastic net is about 24 percent lower
than that of the lasso. Also we see in this case the elastic net is actually
UST because the selected λ is very big (1000). This can be considered as an
empirical evidence to support UST.

If we check the correlation matrix of these eight predictors, we see there
are a bunch of medium correlations although the highest is 0.76 (between
pgg45 and gleason). We have seen that the elastic net is doing better than
lasso by a good margin. In other words, the prediction power of the lasso
gets hurt by the correlations. We conjecture that whenever ridge improves
OLS the elastic net improves the lasso. We further demonstrate this point
by simulations in the next section. Figure 3 displays the lasso and the elastic
net solution paths.
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Table 1: Results of different methods applied to the prostate cancer data

Method Parameter(s) Test MSE Variables Selected
OLS 0.586 (0.184) all

Ridge λ = 1 0.566 (0.188) all
Lasso s = 0.39 0.499 (0.161) (1,2,4,5,8)

Naive elastic net λ = 1, s = 1 0.566 (0.188) all
Elastic net λ = 1000, s = 0.26 0.381 (0.105) (1,2,5,6,8)
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Figure 3: The left panel shows the lasso estimates as a function of s, and
the right panel shows the elastic net estimates as a function of s. Both of
them are piecewise linear, which is a key property of our efficient algorithm.
The solution paths also show the elastic net is identical to univariate soft-
thresholding in this example.
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5 A Simulation Study

The purpose of simulation study is to show that the elastic net not only
dominates the lasso in terms of prediction accuracy, but also is a better
variable selection procedure than the lasso. We generate data from the true
model

Y = Xβ + σε, ε ∼ N(0, 1).

Four examples are presented here. Within each example, our simulated data
consisted of a training set, an independent validation set and an independent
test set. Models were fitted on training data only, and the validation data
were used to select the tuning parameters. We computed the test error (mean
squared errors) on the test data set. Notation ·/ · /· was used to describe the
number of observations in the training, validation and test set respectively.
For instance, 20/20/200 means there are 20 obs. in the training set, 20 obs.
in the validation set and 200 obs. in the test set.

Example 1: We simulated 50 data sets consisting of 20/20/200 observations
and 8 predictors. We let β = (3, 1.5, 0, 0, 2, 0, 0, 0) and σ = 3. The pair-
wise correlation between Xi and Xj was set to be cor(i, j) = (0.5)|i−j|.

Example 2: Same as example 1, except βj = 0.85 for all j.

Example 3: We simulated 50 data sets consisting of 100/100/400 observa-
tions and 40 predictors. We set β = (0, . . . , 0︸ ︷︷ ︸

10

, 2, . . . , 2︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

)

and σ = 15; cor(i, j) = 0.5 for all i, j.

Example 4: We simulated 50 data sets consisting of 50/50/400 observations
and 40 predictors. We chose β = (3, . . . , 3︸ ︷︷ ︸

15

, 0, . . . , 0︸ ︷︷ ︸
25

) and σ = 15. The

predictors X are generated as the follows:

Xi = Z1 + εxi , Z1 ∼ N(0, 1), i = 1, · · · , 5,
Xi = Z2 + εxi , Z2 ∼ N(0, 1), i = 6, · · · , 10,

Xi = Z3 + εxi , Z3 ∼ N(0, 1), i = 11, · · · , 15,

Xi ∼ N(0, 1), Xi i.i.d i = 16, . . . , 40,

where εxi are iid N(0, 0.01), i = 1, . . . , 15. In this model, we have 3
equally important groups, within each group there are 5 members.
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There are also 25 pure noise features. An ideal method would only
select the 15 true features and set the coefficients of the 25 noise fea-
tures to be 0.

OLS performs much worse than ridge and the lasso in all four examples,
so we do not show its results. Table 2 and Figure 4 (Box-plots) summarize
the prediction accuracy comparison results. Table 3 shows the variable se-
lection results. In examples 1 and 4 the lasso performs better than ridge,
while in examples 2 and 3 ridge regression does better than the lasso. The
naive elastic net either has very poor performance (in example 1) or behaves
very similar to ridge regression (in example 2 and 3) or the lasso (in example
4). In all examples, the elastic net predicts better than the lasso, even when
the lasso is doing much better than ridge. The reductions of the prediction
error in four examples are 18%, 18%, 13% and 27%, respectively. The sim-
ulation results indicate that just like ridge dominates OLS, the elastic net
dominates the lasso by a good margin when there are high correlations or
many moderate pairwise correlations. Meanwhile the elastic net still keeps a
sparse representation similar to the lasso. In addition, the elastic net tends to
select more variables than the lasso in scenarios 1 and 2, which is due to the
grouping effect. In example 4, the elastic net behaves like the “oracle”. The
additional “grouped selection” ability makes the elastic net a better variable
selection method than the lasso.

Here is an idealized example showing the important differences between
the elastic net and the lasso. Let Z1 and Z2 be two independent unif(0, 20).
Response Y is generated by Y = Z1 + 0.1Z2 + N(0, 1). Suppose we only
observe

X1 = Z1 + ε1, X2 = −Z1 + ε2, X3 = Z1 + ε3,

X4 = Z2 + ε4, X5 = −Z2 + ε5, X6 = Z2 + ε6,

where εi are iid N(0, 1
16

). 100 data were generated from this model. So
X1,X2,X3 form a group whose underlying factor is Z1, and X4,X5,X6 form
the other group whose underlying factor is Z2. The within group correlations
are almost 1 and the between group correlations are almost 0. 100 data were
generated. Figure 5 displays the solution paths of the lasso and the elastic
net.
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Figure 4: Comparing prediction accuracy of the lasso, ridge, the naive elastic
net(NEN) and the elastic net(EN). The elastic net outperforms the lasso in
all four examples.
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Figure 5: The left and right panel show the lasso and the elastic net (λ2 = 0.5)
solution paths respectively. As can be seen from the lasso solution plot, X3

and X2 are considered the most important variables in the lasso fit, but their
paths are jumpy. The lasso plot does not reveal any correlation information
by itself. In contrast, the elastic net has much smoother solution paths, while
clearly showing the “grouped selection”: X1,X2,X3 are in one “significant”
group and X4,X5,X6 are in the other “trivial” group. The de-correlation
yields grouping effect and stabilizes the lasso solution.
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Table 2: Median of MSE
Method Ex.1 Ex.2 Ex.3 Ex.4
Lasso 3.06 3.87 65.0 46.6
Ridge 4.49 2.84 39.5 64.5

Naive elastic net 5.70 2.73 41.0 45.9
Elastic net 2.51 3.16 56.6 34.5

Table 3: Median of the number of non-zero coefficients
Method Ex.1 Ex.2 Ex.3 Ex.4
Lasso 5 6 24 11

Elastic net 6 7 27 16

6 Microarray Data Example: Leukemia Clas-

sification

There are many good classification/regression methods for microarray anal-
ysis in terms of prediction performance, but they all require an external
procedure to select important genes. For example, support vector machine
and penalized logistic regression (Zhu & Hastie 2003) both use either univari-
ate ranking (UR) (Golub et al. 1999) or recursive feature elimination (RFE)
(Guyon et al. 2002) to reduce the number of genes in their final model. We
prefer a method which can do classification/regression and gene selection si-
multaneously. A typical microarray data set has thousands of genes and less
than 100 samples. Because of the unique structure of the microarray data,
we feel a good method should have the following properties:

1. Gene selection should be built into the procedure.

2. It should not be limited by the fact pÀ n.

3. For those genes sharing the same biological “pathway”, it should be
able to automatically include whole groups into the model once one
gene amongst them is selected.

As we have pointed out, even thought it is a promising variable selection
method in the usual n > p setting, the lasso fails to do both (1) and (2). As
an automatic variable selection method, the elastic net naturally overcomes
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the difficulty of pÀ n and has the ability to do “grouped selection”. Those
properties make the elastic net a good candidate for that purpose.

Let us consider a real microarray data example. The leukemia data have
7129 genes and 72 samples (Golub et al. 1999). In the training data set,
there are 38 samples, among which 27 are type 1 leukemia (ALL) and 11
are type 2 leukemia (AML). The goal is to construct a diagnostic rule based
on the expression level of those 7219 genes to predict the type of leukemia.
The remaining 34 samples are used to test the prediction accuracy of the
diagnostic rule. To apply the elastic net, we first coded the type of leukemia
as 0-1 variable. Then the 0-1 response y was fitted by the elastic net. The
classification function is I(fitted value > 0.5), where I(·) is the indicator
function. We optimized the elastic net by 10-fold cross-validation on the
training data, using (λ, s) as the tuning parameter. To make the computation
easier, we pre-screened out 1000 most “significant” genes as the predictors,
according to their t-statistic used in SAM (Tusher et al. 2001). The pre-
screening step is not crucial in our method.

The elastic net with λ = 0.01 and s = 0.46 selects 87 genes with 10-
fold cross-validation error 1/38 and test error 0/34. If we sacrifice one more
cross-validation error by using the one standard error rule, then we choose
s = 0.41, which reduces the number of selected genes to 53 and still has
0 test error. As mentioned in Section 3.5 we can adopt the early stopping
strategy to facilitate the computation. We stopped the LARS-EN algorithm
after 200 steps. If using the steps of LARS-EN algorithm as the tuning
parameter, steps = 85 gives 10-fold cross-validation error 2/38 and the test
error 0/34 with 52 genes selected. Figure 6 shows the classification results,
and Table 4 summarizes the results of several other competitors including
Golubs’ method, support vector machine (SVM), penalized logistic regression
(PLR), nearest shrunken centroid (NSC) (Tibshirani et al. 2002). The elastic
net gives the best classification results, and it is an internal gene selection
method. We applied the elastic net to other microarray data and got good
results too.

7 Discussion

We have proposed the elastic net, a novel shrinkage and selection regression
method. The elastic net produces a sparse model with good prediction accu-
racy, while encouraging a grouping effect. The empirical results and simula-
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Figure 6: Leukemia classification and gene selection by the elastic net(λ =
0.01). The thin line shows the 10-fold cross-validation error, and the test
error corresponds to the heavy line. The upper plot uses the whole elastic net
solution paths, and the lower plot uses the early stopping strategy (stopped at
200 steps). We see these two methods give very similar results. Since com-
puting s depends on the fit at the last step of the LARS-EN algorithm, when
we use the early stopping strategy, the actual values of s are not available
in 10-fold cross-validation. That is why we use steps as the regularization
parameter. On the training set, steps=200 is equivalent to s = 0.5135, indi-
cated by the broken vertical line in the upper plot. Note the one-one mapping
s = s(steps) is data-dependent, which means s(steps = 200) may not be
0.5135 for another data set.
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Table 4: Summary of leukemia classification results

Method 10-fold CV error Test error No. of genes
Golub 3/38 4/34 50

SVM RFE 2/38 1/34 31
PLR RFE 2/38 1/34 26

NSC 2/38 2/34 21
Elastic net (λ = 0.01, s = 0.46) 1/38 0/34 87
Elastic net (λ = 0.01, s = 0.41) 2/38 0/34 53

Elastic net (λ = 0.01, steps = 85) 2/38 0/34 52

tions demonstrate the good performance of the elastic net and its superiority
over the lasso. When used as a classification method, the elastic net performs
very well in the analysis of microarray data in terms of misclassification error
and automatic gene selection.

The elastic net estimate, being a combination of a lasso and ridge esti-
mates, enjoys the good properties of both of the methods. Combining is not
a new idea in the statistics literature. Some famous examples are Bagging
(Breiman 1996), Boosting (Freund & Schapire 1997) and Bayesian model
averaging (Hoeting et al. 1999). Those techniques share the same traditional
combining strategy: the combined estimator is a convex combination of a list
of estimators with cleverly chosen combining weights so that the combined
estimator performs (much) better than any estimator in the list. However,
the combining strategy in our work is very different. Instead of directly
combining the lasso and ridge estimates, we combine the lasso and ridge
penalties; and the combined estimator is a penalized estimator using the
combined penalty, followed by some post-process adjustment (re-scaling in
this work). To our knowledge, this combining strategy has not been reported
in the literature.

We consider the elastic net as a generalization of the lasso, and do not
suggest pushing the lasso away. In fact, the lasso is a valuable tool for model
fitting and feature extraction . Recently the lasso was used to explain the
success of Boosting. It is argued that Boosting performs a high-dimensional
lasso without explicitly using the lasso penalty. See Hastie et al. (2001),
Efron et al. (2004) and Friedman et al. (2004). We believe it is beneficial to
have a better understanding of the properties of the lasso.
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Appendix: Proofs

Proof of Theorem 1
Part (1): Fix λ2 > 0. ∀λ1 ≥ 0, by definition we have

β̂ (λ1, λ2) = arg min
β

L (λ1, λ2,β) , (13)

where L (λ1, λ2,β) is defined in (3).

If β̂i (λ1, λ2) 6= β̂j (λ1, λ2), let us consider an alternative estimates β̂
∗

(λ1, λ2)

β̂∗k (λ1, λ2) =





β̂k (λ1, λ2) if k 6= i and k 6= j
1
2

(
β̂i (λ1, λ2) + β̂j (λ1, λ2)

)
if k = i or k = j.

Because Xi = Xj, it is obvious that Xβ̂
∗

(λ1, λ2) = Xβ̂ (λ1, λ2), thus

∣∣∣Y −Xβ̂
∗

(λ1, λ2, )
∣∣∣
2

=
∣∣∣Y −Xβ̂ (λ1, λ2)

∣∣∣
2
.

On the other hand, we have

∣∣∣β̂
∗

(λ1, λ2)
∣∣∣
1
≤
∣∣∣β̂ (λ1, λ2)

∣∣∣
1

and
∣∣∣β̂
∗

(λ1, λ2)
∣∣∣
2
<
∣∣∣β̂ (λ1, λ2)

∣∣∣
2
.

Therefore L
(
λ1, λ2, β̂

∗
(λ1, λ2)

)
< L

(
λ1, λ2, β̂ (λ1, λ2)

)
, which contradicts

(13). So we must have β̂i (λ1, λ2) = β̂j (λ1, λ2) .
2

Part (2): If β̂i (λ1, λ2) β̂j (λ1, λ2) > 0, then both β̂i (λ1, λ2) and β̂j (λ1, λ2)
are non-zero. Moreover, we have

sgn
(
β̂i (λ1, λ2)

)
= sgn

(
β̂j (λ1, λ2)

)
,

Dλ1,λ2(i, j) = 1
|Y |

∣∣∣β̂i (λ1, λ2)− β̂j (λ1, λ2)
∣∣∣ .
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Because of (13), β̂ (λ1, λ2) satisfies

∂L (λ1, λ2,β)

∂βk

∣∣∣∣
β=

ˆβ(λ1,λ2)
= 0 if β̂k (λ1, λ2) 6= 0. (14)

Hence we have

−2XT
i

(
Y −Xβ̂ (λ1, λ2)

)
+ λ1sgn

(
β̂i (λ1, λ2)

)
+ 2λ2β̂i (λ1, λ2) = 0, (15)

−2XT
j

(
Y −Xβ̂ (λ1, λ2)

)
+ λ1sgn

(
β̂j (λ1, λ2)

)
+ 2λ2β̂j (λ1, λ2) = 0. (16)

Substracting (15) from (16) gives

(XT
j −XT

i )
(
Y −Xβ̂ (λ1, λ2)

)
+ λ2

(
β̂i (λ1, λ2)− β̂j (λ1, λ2)

)
= 0,

which is equivalent to

β̂i (λ1, λ2)− β̂j (λ1, λ2) =
1

λ2

(XT
i −XT

j )r̂ (λ1, λ2) , (17)

where r̂ (λ1, λ2) = Y −Xβ̂ (λ1, λ2) is the residual vector. Since X are stan-
dardized, |Xi −Xj|2 = 2(1 − ρ) where ρ = cor(Xi,Xj). By (13) we must
have

L
(
λ1, λ2, β̂ (λ1, λ2)

)
≤ L (λ1, λ2,β = 0) ,

i.e., |r̂ (λ1, λ2)|2 + λ2

∣∣∣β̂ (λ1, λ2)
∣∣∣
2

+ λ1

∣∣∣β̂ (λ1, λ2)
∣∣∣
1
≤ |Y |2 .

So |r̂ (λ1, λ2)| ≤ |Y |. Then (17) implies

Dλ1,λ2(i, j) ≤ 1

λ2

|r̂ (λ1, λ2)|
|Y | |Xi −Xj| ≤

1

λ2

√
2(1− ρ).

2

Proof of Theorem 2
Let β̂ be the elastic net estimates. By definition and (7) we have

β̂ = arg min
β

∣∣∣∣∣Y
∗ −X∗

β√
1 + λ2

∣∣∣∣∣

2

+
λ1√

1 + λ2

∣∣∣∣∣
β√

1 + λ2

∣∣∣∣∣
1

= arg min
β
βT

(
X∗TX∗

1 + λ2

)
β − 2

Y ∗TX∗√
1 + λ2

+ Y ∗TY ∗ +
λ1 |β|1
1 + λ2

. (18)
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Substituting the identities

X∗TX∗ =

(
XTX + λ2

1 + λ2

)
, Y ∗TX∗ =

Y TX√
1 + λ2

, Y ∗TY ∗ = Y TY

into (18), we have

β̂ = arg min
β

1

1 + λ2

(
βT

(
XTX + λ2I

1 + λ2

)
β − 2Y TXβ + |β|1

)
+ Y TY

= arg min
β
βT

(
XTX + λ2I

1 + λ2

)
β − 2Y TXβ + |β|1 .
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